
String
Pattern

Matching
CS 251 - Data Structures

and Algorithms

Note:
Slides complement the

discussion in class

2

Table of Contents
Strings and substrings
Definitions

Brute-Force Algorithm
Let’s be brute!

Boyer-Moore Algorithm
Heuristics to the rescue

01

02

03

3

Definitions
01

Strings and Substrings

4

Given strings 𝑇 (text) and 𝑃 (pattern), find a substring of 𝑇 that is equal to 𝑃.
5

Strings and
Alphabets

A string is a sequence of characters.

Examples:
● HTML code
● A Java program
● DNA sequence

An alphabet Σ is the set of possible
characters for a family of strings.

Examples:
● English alphabet (26 characters)
● ASCII (7 bits per character)
● Unicode (16 bits per character)
● {A, C, G, T}

6

Substring, Prefix, Suffix

Prefix
𝑆. prefix 𝑖 → 𝑆 0, 𝑖

Substring
𝑆. substr 𝑖, 𝑗 → 𝑆 𝑖, 𝑗

Suffix
𝑆. suffix 𝑖 → 𝑆 𝑖, 𝑚 − 1

Substring of 𝑆
between the
character at index 0
and the character
at index 𝑖.

Subsequence of 𝑆
consisting of
characters with
ranks between 𝑖
and 𝑗.

Substring of 𝑆
between the
character at index 𝑖
and the last
character at index
𝑚− 1.

Let 𝑆 be a string of size 𝑚. Let 𝑖, 𝑗 ∈ 0,𝑚 − 1 , 𝑖 ≤ 𝑗:

7

Substring, Prefix, Suffix

Prefix: 𝑆[0, 2]Substring: 𝑆[1, 7] Suffix: 𝑆[7, 12]

“Ali”“lice an” “nd Bob”

Example: 𝑆 = "Alice and Bob",𝑚 = 13 :

8

0 1 2 3 4 5 6 7 8 9 10 11 12

A l i c e a n d B o b𝑆

Brute-Force Algorithm
02

Let’s be brute!

9

Fundamental Problem

Given strings 𝑇 (text) and 𝑃 (pattern), find a substring of 𝑇 that
is equal to 𝑃.

Example:
𝑇 = 1011011010100101010010101010010101001010
𝑃 = 01101

10

Fundamental Problem

Given strings 𝑇 (text) and 𝑃 (pattern), find a substring of 𝑇 that
is equal to 𝑃.

Example:
𝑇 = 1011011010100101010010101010010101001010
𝑃 = 01101

11

Fundamental Problem

Given strings 𝑇 (text) and 𝑃 (pattern), find a substring of 𝑇 that
is equal to 𝑃.

Example:
𝑇 = 1011011010100101010010101010010101001010
𝑃 = 01101

12

Brute-Force Algorithm

Input: Strings 𝑃 of length 𝑚, and 𝑇 of length 𝑛.

Output: The index in 𝑇 of the first character in the match, or −1 if no
match is found.

Idea: Compare the pattern 𝑃 with the text 𝑇 for each possible shift of 𝑃
relative to 𝑇, until one of the following occur:
• A match is found.
• All placements of the pattern have been tried.

13

Brute-Force
Algorithm

algorithm BruteForceMatch(T:string, P:string)

let n be the length of T
let m be the length of P

for i from 0 to n–m do

j ← 0

while j < m and T[i+j] = P[j] do
j ← j + 1

end while

if j = m then
return i

end if

end for

return -1
end algorithm

For loop runs 𝑛 − 𝑚 + 1 times: 𝑂(𝑛)

While loop runs at most 𝑚 times per
for loop iteration.

Runtime: 𝑂(𝑛𝑚)

14

𝑇 = “a pattern matching algorithm”
𝑃 = “rithm”

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

a _ p a t t e r n _ m a t c h i n g _ a l g o r i t h m

15

𝑇 = “a pattern matching algorithm”
𝑃 = “rithm”

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

a _ p a t t e r n _ m a t c h i n g _ a l g o r i t h m

r i t h m

r i t h m

r r r r r i t h m

r i t h m

r I t h m

r r r r r r r r r r r r r r i t h m

r i t h m

16
#compares between characters = 29

Brute-Force Algorithm

Can you imagine a worst-case scenario?

Situation:
𝑃 = ABBC
𝑇 is some string of As, Bs, and Cs

Here’s a bad 𝑻:
𝑇 = ABBABBABBABBABBABBABBABBABBABBABBABBABBC

17

Brute-Force Algorithm

An even simpler but worse worst-case scenario?

Situation:
𝑃 = AAAAAH
𝑇 is some string of As and Hs

Here’s a bad 𝑻:
𝑇 = AAAH

18

Boyer-Moore Algorithm
03

Heuristics to the rescue

19

Heuristic (Math & CS)

“A heuristic is a technique designed for
solving a problem more quickly when
classic methods are too slow, or for finding
an approximate solution when classic
methods fail to find any exact solution.

This is achieved by trading optimality,
completeness, accuracy, or precision for
speed.

In a way, it can be considered a shortcut.”

https://en.wikipedia.org/wiki/Heuristic_(computer_science) 20

https://en.wikipedia.org/wiki/Heuristic_(computer_science)

Boyer-Moore Algorithm

Idea: Compare 𝑃 with a substring of 𝑇 moving backwards in 𝑃.

Character-jump heuristic: When a mismatch occurs at 𝑇[𝑖]:

• If 𝑃 contains 𝑇[𝑖], shift 𝑃 to align the last occurrence of 𝑇 𝑖 in 𝑃 with
𝑇[𝑖].

• Else, shift 𝑃 to align 𝑃[0] with 𝑇[𝑖 + 1].

21

Last-Occurrence Function

Boyer-Moore’s algorithm preprocess the
pattern 𝑃 and the alphabet Σ to build the last-
occurrence function 𝐿 mapping Σ to integers,
where 𝐿(𝑐) is defined as:

• The largest index 𝑖 such that 𝑃[𝑖] = 𝑐, or
• −1 otherwise (i.e., 𝑐 is not in 𝑃)

The last-occurrence function can be
represented by an array indexed by the
numeric codes of the characters.

Example:
Σ = {a,b,c,d}
𝑃 = abacab

𝒄 a b c d

𝑳(𝒄) 4 5 3 -1

22

Last-Occurrence Function

We can calculate the last-occurrence function
in 𝑂(𝑚 + 𝑠) where 𝑚 is the length of 𝑃 and 𝑠
is the length of Σ.

• Set all the values in the array to −1: 𝑂(𝑠)
• Scan 𝑃 in reverse and update values in the

array for each new character: 𝑂(𝑚)

Σ = {a,b,c,d}
𝑃 = bbaccd

𝒄 a b c d

𝑳(𝒄) 2 1 4 5

Σ = {a,b,c,d}
𝑃 = dcba

𝒄 a b c d

𝑳(𝒄) 3 2 1 0

23

Boyer-Moore
Algorithm

algorithm BoyerMooreMatch(T:string, P:string, Σ:alphabet)

let n be the length of T
let m be the length of P

L ← lastOccurence(P, Σ)

i ← m - 1
j ← m - 1

repeat
if T[i] = P[j] then

if j = 0 then
return i

else
i ← i - 1
j ← j - 1

end if
else

l ← L[T[i]]
i ← i + m – min(j, 1 + l)
j ← m – 1

end if
until i > n – 1

return -1
end algorithm

24

𝑇 = “a pattern matching algorithm”
𝑃 = “rithm”

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

a _ p a t t e r n _ m a t c h i n g _ a l g o r i t h m

𝑐 h i m r t *

𝐿(𝑐)

25

𝑇 = “a pattern matching algorithm”
𝑃 = “rithm”

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

a _ p a t t e r n _ m a t c h i n g _ a l g o r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

𝑐 h i m r t *

𝐿(𝑐) 3 1 4 0 2 -1

26
#compares between characters = 11

Boyer-Moore Algorithm

Can you imagine a worst-case scenario?

Situation:
𝑃 = baaa
𝑇 = aa

Why is this bad?

27

Slidesgo

Flaticon Freepik

Stories

CREDITS: This presentation template was created by Slidesgo, including
icons by Flaticon, infographics & images by Freepik and illustrations by

Stories

“\0”
Do you have any questions?

28

https://slidesgo.com/
https://www.flaticon.com/
https://www.freepik.com/
https://stories.freepik.com/

	Slide 1: String Pattern Matching
	Slide 2: Note: Slides complement the discussion in class
	Slide 3: Table of Contents
	Slide 4: Definitions
	Slide 5
	Slide 6: Strings and Alphabets
	Slide 7: Substring, Prefix, Suffix
	Slide 8: Substring, Prefix, Suffix
	Slide 9: Brute-Force Algorithm
	Slide 10: Fundamental Problem
	Slide 11: Fundamental Problem
	Slide 12: Fundamental Problem
	Slide 13: Brute-Force Algorithm
	Slide 14: Brute-Force Algorithm
	Slide 15
	Slide 16
	Slide 17: Brute-Force Algorithm
	Slide 18: Brute-Force Algorithm
	Slide 19: Boyer-Moore Algorithm
	Slide 20: Heuristic (Math & CS)
	Slide 21: Boyer-Moore Algorithm
	Slide 22: Last-Occurrence Function
	Slide 23: Last-Occurrence Function
	Slide 24: Boyer-Moore Algorithm
	Slide 25
	Slide 26
	Slide 27: Boyer-Moore Algorithm
	Slide 28: “\0”

